

Future directions for convection-permitting climate modelling at the Met Office

Chris Short

2024 BoM Annual R&D Workshop 11/09/2024

Adding environmental complexity to UK climate projections

Alex Arnold, Segolene Berthou, Juan Castillo, Chris Short, Simon Tucker

Motivation

- Current set of UK national climate projections (UKCP18) included a 12-member 2.2 km CPM for the first time
 - Atmosphere coupled to land, SSTs imposed as daily means from driving GCM
- Aim to run climate change experiments with the Regional Environmental Prediction (REP) system
 - Fully coupled: atmosphere, land, ocean (with explicit tides), waves, rivers
- Key topics to investigate:
 - The importance of processes missing from atmosphere-only simulations for regional climate change projections (e.g. coupled system feedbacks, tidal mixing, river outflows)
 - The impact of climate change on multi-hazard compound events
 - The interdependence of compound marine and land heat waves

UK climate runs with the Regional Coupled Suite

Configuration:

- Atmosphere/land: RAL3.3.1

- Ocean/waves: CO8

- Explicit tides

- Rivers: River Flow Model (RFM)

Resolution:

Atmosphere/land: 4.4km -> 2.2km

Ocean:1.5km

Waves: 3km -> 1.5km

3x timeslice runs (RCP8.5)

→ UKCP18 2.2 km projections (standard member)

Ocean AMM15 spin-up

Coupled run

1990-2000

Hindcast run

ERA-5 boundaries (atmosphere & waves) GloSea5 boundaries (ocean)

Alex Arnold

Current status and future directions

- Runs are underway:
 - Hindcast atm-only: ~4.5 yrs in
 - Hindcast cpld: ~3.5 yrs in
 - Present-day atm-only: ~2.5 yrs in
 - Present-day cpld: ~0.5 yrs in
 - Future atm-only: ~2 yrs in
 - Future cpld: ~0.5 yrs in

- This will be the first look at the REP in UK climate mode:
 - Opportunities for inclusion in next generation of UK climate information

Advert: Coupled Maritime Continent runs

- Recently completed a pair of simulations over the Maritime Continent:
 - Atmosphere-only: 4.4 km atmosphere (RAL3.1/3.2) with hourly LBCs from ERA5 and daily mean SSTs prescribed from an oceanonly run of the 1/12 deg NOC regional ocean model (forced by Drakkar renanalysis)
 - Coupled: same as above but with the regional atmosphere fully coupled to the 1/12 deg NOC regional ocean model. Ocean LBCs and ICs from NOC.
- NOC 1/12 deg regional ocean model is shelf-enabled with explicit tides
- 10 years long 2002 2012
- Access to data available upon request
 - Email me if interested: christopher.short@metoffice.gov.uk

Preparing for km-scale global climate models of the future

Calum Scullion, Chris Short + the wider K-Scale team

Motivation

- Can km-scale global models offer a stepchange over conventional CMIP-class models?
 - Local impacts: explicit convection improves representation of precipitation extremes – critical for adaptation
 - Upscale impacts: improved representation of tropical precipitation affects mid-latitude climate via global teleconnections
 - Different cloud distributions and properties, modifying feedbacks and impacting climate sensitivity
 - Ocean mesoscale important for regional climate change too
- Challenges:
 - Computationally expensive
 - Huge data volumes
 - Convection not fully resolved
 - Tuning

1.8 1.5

CMIP6

X-SHIELD

CMIP6

X-SHIELD

Current status and future directions

- N2560 global model with RAL3.2 and GAL9 ancils now runs!
- Next steps:
 - Design year-long atm-only and atm-only +4K SST runs to contribute to DYAMOND v3 and HighResMIP2
 - Potentially a year-long run with ocean coupling for DYAMOND v3 too
 - Can we extend to multidecadal on new HPC for full AMIP and AMIP +4K SST runs?!

DYAMOND v3 protocol: https://www.researchsquare.com/article/rs-4458164/v1

HighResMIP2 protocol: https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2582/

Huw Lewis

Emulation of CPMs using machine-learning techniques

Lizzie Kendon, Henry Addison, Antoine Doury, Ben Booth, Samuel Somot, Peter Watson, Erika Coppola, Jose Manuel Gutierrez, James Murphy, Calum Scullion

Motivation

- Key potential benefits of ML down-scaling:
 - Augment high resolution regional climate simulations at a fraction of the cost
 - Provide a more comprehensive sampling of uncertainty (downscaling other GCMs/scenarios) to support decision making
 - Downscale a much larger set of GCMs (not just those for which LBC data is available)
 - Allow rapid production of local climate information
- See "Potential for machine learning to augment regional climate simulations in provision of local climate change information", Kendon et al 2024, submitted to BAMS.

Kendon et al 2024

Emulating UKCP Local precipitation with ML

Input

Low-res predictors (60km)

Output

High-res daily precipitation

Example output

Target Coarsened CPM

Samples using coarsegrained CPM as input

Samples using inputs from GCM

Skill for emulating daily precipitation

Transferability to other GCMs

Kendon et al 2024

Future directions

- Several key areas for future work:
 - Can ML approaches give reliable predictions for extremes?
 - Transferability to other GCMs
 - Multi-variate emulation: required for risk assessments of compound hazards and impact metrics such as drought and heat stress
 - Evaluation of ML skill:
 - Weather and climate knowledge required to define what "good" looks like
 - Develop open benchmark datasets to assess ML added value (e.g. compared to classical statistical down-scaling)
 - Interpretability right answers for right reasons?

Lapuschkin et al 2019

Thank you!

Spare slides

Improved understanding – REP as a 'laboratory'

- Tidal mixing reduces ocean stratification in the North West shelf
- Tides dampened the 2018 heatwave by 0.3K on average, locally 1K

Feedback on the weather over land

Effect of the marine heatwave on air temperature on June 19th-26th

Warmest June on record in the UK (+0.9°C), of which 0.6°C came from the marine heatwave feedback on the atmosphere

Warmer temperatures advected by sea breezes (peak in the early afternoon)

Sea breezes increased, despite weaker land/sea contrast and increased rainfall by 20% for a week

Evaluation of ML skill

Some suggested evaluation metrics

- Weather and climate knowledge needs to be employed to define what "good" looks like.
- Realism encompasses full spatial and temporal structure
- Visualisation of extreme cases important
- Benchmark important for assessing ML added value e.g. compared to classical statistical downscaling
- Use available RCM/CPM simulations as "truth" for future climate
- Interpretable AI right answers for right reasons?
- Key area where climate science community can contribute

Metric	Variable(s)
Seasonal mean	All
Daily (and potentially sub-daily) distribution	All
Wet day frequency and intensity	Precipitation
Joint distribution of intensity v duration	Precipitation, temperature
Joint distribution of intensity v spatial extent	Precipitation, temperature
Temporal correlation structure	All
Wet/dry or warm/cold spells	Precipitation, temperature
Diurnal cycle	Precipitation, temperature
Extremes on seasonal, daily (and potentially subdaily) timescales (including 10y+ return period events)	All
Long-term stability	All
Temperature-precipitation scaling	Precipitation (and humidity)
Daily distribution by weather regime	All

Implications for CPM/RCM ensemble design

- For climate emulation: training and test data for future periods need to come from future climate model simulations
 - Hybrid approach with ML augmenting RCM/CPM simulations
- ML to provide uncertainty information, i.e. reducing need for large ensembles of dynamical simulations
 - ➤ In near future potential to help fill CORDEX GCM/RCM/CPM matrix
- Using ML can mine a wider range of GCMs for which expensive LBC data are not available
- Focus of dynamical simulations to provide the best training data for ML emulators

Implications:

- Dynamical simulations at the highest possible resolution and/or greatest complexity affordable
- Work to address existing biases in CPMs key priority for coordinated community activity
- Prioritise simulations of high-end cases, i.e. dynamically downscaling high climate sensitivity models/scenarios, and also extreme weather events
- ➤ Training data needs to span the range of plausible climate and weather conditions
- ➤ Focus coordination on spatial domains (difficulties in spatial transferability)